圆是指在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线,标准方程是(x-a)?+(y-b)?=r?,其中点(a,b)是圆心,r是半径。下面是小编为大家整理的有关初三数学圆的下面是小编为大家整理的2023初三数学圆知识点归纳总结(完整文档),供大家参考。
圆是指在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线,标准方程是(x-a)?+(y-b)?=r?,其中点(a,b)是圆心,r是半径。下面是小编为大家整理的有关初三数学圆的知识点归纳,希望对你们有帮助!
初三数学圆的知识点归纳
一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。
则AB=(x1+x2,y1+y2)
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的'外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
(2)切线长定理。
∵PA、PB切⊙O于点A、B
∴PA=PB,∠1=∠2。
13、内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.
可得方程:5-x+7-x=6,解得x=3
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求内切圆的半径r。
分析:先证得正方形ODCE,
得CD=CE=r
AD=AF=b-r,BE=BF=a-r
b-r+a-r=c
得r=(b+a-c)/2
(4)S△ABC=abc/4r
14、(补充)
(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(2)相交弦定理。
圆的两条弦AB与CD相交于点P,则PAPB=PCPD。
(3)切割线定理。
如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PBPC。
(4)推论:如图,PAB、PCD是⊙O的割线,则PAPB=PCPD。
15、圆与圆的位置关系。
(1)外离:d>r1+r2,交点有0个;
外切:d=r1+r2,交点有1个;
相交:r1-r2
内切:d=r1-r2,交点有1个;
内含:0≤d
(2)性质。
相交两圆的连心线垂直平分公共弦。
相切两圆的连心线必经过切点。
16、圆中有关量的计算。
(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。
L=n(圆心角)xπ(圆周率)xr(半径)/180
(2)扇形的面积用S表示。
S=lr/2
(3)圆锥的侧面展开图是扇形。
r为底面圆的半径,a为母线长。
扇形的圆心角α=l/r
S侧=arS全=ar+r2
中考数学圆知识点总结
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
21.定理 相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的.多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-(R-r) 外公切线长= d-(R+r)
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
初三数学圆的知识点归纳 相关热词搜索: 知识点 归纳 数学 初三数学圆知识点归纳总结版权所有:求精文档网 2018-2024 未经授权禁止复制或建立镜像[求精文档网]所有资源完全免费共享
Powered by 求精文档网 © All Rights Reserved.。备案号:粤ICP备18015855号-3